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Laboratoire de Physiologie Cellulaire Végétale, Commissariat à l’Energie Atomique, Centre National de la Recherche Scientifique,
Institut National de la Recherche Agronomique and Université Joseph Fourier, F38054, Grenoble, France; and zDepartments
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ABSTRACT Actin polymerization is the driving force for a large number of cellular processes. Formation of lamellipodia and
filopodia at the leading edge of motile cells requires actin polymerization induced mechanical deformation of the plasma
membrane. To generate different types of membrane protrusions, the mechanical properties of actin filaments can be constrained
by interacting proteins. A striking example of such constraint is the buckling of actin filaments generated in vitro by the cooperative
effect of a processive actin nucleating factor (formin) and a molecular motor (myosin II). We developed a physical model based on
equations for an elastic rod that accounts for actin filament buckling. Both ends of the rod were maintained in a fixed position in
space and we considered three sets of boundary conditions. The model qualitatively and quantitatively reproduces the shape
distribution of actin filaments. We found that actin polymerization counterpoises a force in the range 0.4–1.6 pN for moderate end-
to-end distance (;1 mm) and could be as large as 10 pN for shorter distances. If the actin rod attachment includes a spring, we
discovered that the stiffness must be in the range 0.1–1.2 pN/nm to account for the observed buckling.

INTRODUCTION

Actin filament nucleation and elongation, which promotes

lamellipodia formation, propulsion of pathogens or endo-

somes, and other processes controlling cell plasticity (for a

general review, see Pollard and Borisy (1)), is controlled by a

variety of accessory protein with diverse properties. The

Arp2/3 complex is the best understood actin filament nucle-

ation factor (1). However, a second nucleation factor has been

a recent focus of intense study. Formin participates in the

formation of a growing list of actin-based higher ordered

structures (2), including actin cables in yeast (3), the cyto-

kinetic ring (4), focal adhesions (5–7), cell migration and

ruffling (8,9), endosome motility (10), and filopodia (11,12).

Direct in vivo observations (10) and in vitro experiments

(13–16) have shown that formins are processive nucleators,

which remain continuously attached to the fast growing actin

filament barbed end while directing insertion of actin mono-

mers at that end (17).

Macromolecular assembly has the capacity to convert

chemical energy into forces that can move intracellular endo-

somes, cell membrane, or experimental objects, like polysty-

rene beads. However, the molecular mechanisms underlying

force generation is still under debate: for instance, Listeria
propulsion, a well-documented experimental model for cell

motility (2), is not totally understood, although different

models have been proposed (17–21).

To elucidate the conversion of chemical energy into

mechanical work, the use of total internal reflection fluores-

cence (TIRF) microscopy has been a valuable tool to study the

properties of individual actin filament under ligand constraint

(13). Indeed, this technique was utilized to evaluate the force

induced by a single actin filament (13). In these experiments,

the region near the pointed end of an actin filament is tethered

to a rigid surface through side binding to an inactive myosin

molecule whereas the barbed end is capped by a formin

grafted to the surface. Actin polymerization continues at the

formin-associated barbed end while the end-to-end distance

of the filament is constrained in space. Therefore, the filament

buckles and its configuration depends on the balance of the

processive forces developed by actin polymerization and the

spatial constraints imposed on the two ends.

We report the analysis of two-dimensional buckling by a

mechanical model accounting satisfactorily for the spatial

configurations of actin filaments and for the force/filament-

length relationship. We propose a direct semiquantitative

measure of the forces developed by a growing filament against

its ends. We also show that the actin monomer concentration

required to begin buckling is ;1–10 mM for actin filament

lengths above 0.5 mm. Shorter actin filaments (end-to-end

distance between 0.2 and 0.5 mm) necessitate actin monomers

concentration up to 10 mM to buckle. Finally, we predict that

the stiffness of the bonds between the surface and actin

filament should be in a 0.2–1.2 pN nm�1 range, which is

consistent with the experimental values obtained for the cross-

bridge stiffness in acto-myosin cables. We also show that

below a critical end-to-end length, actin filaments cannot

buckle in realistic conditions regardless of the amount of free

actin monomers or bond robustness.Submitted August 3, 2006, and accepted for publication November 22, 2006.
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MATERIALS AND METHODS

Total internal reflection fluorescence microscopy

Rhodamine actine polymerization was observed on an Olympus IX-71 inverted

microscope equipped with a 603, 1.45 NA Planapo objective (Olympus,

Melville, NY), and modified as described (22) for TIRF illumination. The laser

used for these experiments was an Omicron Laserage LAFE 1007 (Latronics,

Aachen, Germany) emitting a 532-nm wavelength, and limited to 10 mW. The

time course of actin polymerization was acquired with a Hamamatsu ORCA-

ER camera (Hamamatsu Photonics Deutschland GmbH, Herrsching, Ger-

many) using MetaMorph version 6.2r6 (Universal Imaging, Media, PA).

Glass flow cells were coated with a mixture of N-ethyl-maleimide (NEM)-

myosin and mouse formin mDia1 or yeast Bni1p for 1 min, then washed

extensively with 1% BSA for another minute (23). A mixture of 1 mM

rhodamine actine bound to 5 mM profilin in fluorescence buffer (10 mM

imidazole-HCl, pH 7.0, 50 mM KCL, 1 mM MgCl2, 100 mM DTT, 20 mg/ml

catalase, 100 mg/ml glucose oxidase, 15 mg/ml glucose, 0.5% methylcellulose)

was injected into the flow cell. Actin polymerization and buckling events were

observed a few minutes after injection.

RESULTS

Model

We used total internal reflection fluorescence microscopy

(TIRFM) to observe the transition between initial (Fig. 1 A,

left column) and buckled configuration (Fig. 1 A, right
column) of growing actin filaments bound to the microscope

slide by formin (barbed end filament) or by NEM myosin II

(side binding near the pointed end filament). To analyze the

part of attachment conditions in the production of the

buckling force, we develop a mechanical model for filament

bending, as shown in Fig. 1 B. The curve represents the

filament centerline whose extremities are fixed in space and

we note u, the angle between the unit vector tangent to the

curve and the horizontal axis; the other variables or param-

eters used in the model are listed in Table 1.

The theory of elastic rods (Kirchhoff equations, (24))

expresses the conditions for mechanical equilibrium of

elastic rods given the geometrical and mechanical constraints

on the extremities. In Appendix A, we present a derivation of

the equations and boundary conditions, as well as the

elementary properties of the solutions (Appendix B). The

equations for the rod position and orientation read

Lp

d2
u

ds
2 ¼ �N1sinu 1 N3cosu;

dx

ds
¼ cosu;

dz

ds
¼ sinu; (1)

where Lp is the persistence length of the actin filament and s
is the arclength measured along the rod centerline; u is the

angle between the tangent to the filament centerline and

the horizontal axis; x and z are the Cartesian coordinate of the

point at arclength s (Fig. 1 B). In Appendix A, we show that

the force vector that balances the surface reaction at s ¼ 0
and s ¼ L is constant. Its horizontal and vertical components

denoted, respectively, N1 and N3, are unknown quantities

that will be determined as part of the solution of equations in

Eq. 1. The first equation in Eq. 1 expresses the balance

between bending, due to local change of the filament cen-

terline curvature, and the moment of the force (respectively,

Lpðd2u=ds2Þ and N1sinðuÞ � N3cosðuÞ). The second and third

equations give the components of the unit vector tangent to

the rod centerline.

The experimental setup imposes fixed positions to the two

filament ends to which correspond four geometrical condi-

tions associated with the position of actin filament extremities

xð0Þ ¼ 0; zð0Þ ¼ 0;

xðLÞ ¼ a; zðLÞ ¼ 0; (2)

where a is the constant end-to-end distance (a , L). Besides

geometrical conditions (2), giving the location of filaments

extremities, we impose conditions for the direction of the

filament by specifying either the value of the angle u or its

derivative with respect to arclength ðdu=dsÞ. From observa-

tions of experimental actin filament buckling, all configura-

tions close to the filament ends are amenable to two cases

only. In the first situation, the filament changes its direction

continuously while its length increases (see, e.g., left end of

the filament, middle row in Fig. 1 A). The corresponding math-

ematical condition is ðdu=dsÞ ¼ 0, which allows free rotation

of the filament end about the attachment point. A second

situation is illustrated by the right end of the same filament

(Fig. 1 A, middle row) where the direction is globally constant

throughout elongation; the corresponding condition is u ¼ 0.

Therefore, we are left with three possibilities for u

BC1 :
du

ds

� �
s¼0

¼ 0;
du

ds

� �
s¼L

¼ 0;

BC2 :
du

ds

� �
s¼0

¼ 0; uðLÞ ¼ 0;

BC3 : uð0Þ ¼ 0; uðLÞ ¼ 0: (3)

Boundary condition of type 1 (BC1) represents a filament

whose both ends can rotate about the attachment point;

boundary condition of type 3 (BC3) imposes a horizontal tan-

gent vector to the filamentcenterline; the thirdcondition (bound-

ary condition of type 2 or BC2) combines both constraints. The

solution of Eq. 1, accompanied with conditions in Eq. 2 and one

of the conditions listed in Eq. 3, gives the actin filament con-

figuration and the force exerted on the surface.

Equilibrium configurations and force

All rod configurations obtained with the boundary conditions

listed in Eq. 3 (Fig. 2, A, B, and C) are in very good agreement

with the experimental results (see also Fig. 3, A and B, in Kovar

and Pollard (13)). The model shows that all boundary conditions

BC1–3 can happen in realistic conditions and are sufficient to

account for the variety of observed actin filament shapes.

During actin filament elongation, bent actin filaments exert

a force on the surface via the formin or myosin bond that is
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transduced to the slide surface (in vitro) or to cellular struc-

tures (in vivo). The magnitude of the force is not directly

proportional to the amplitude of the actin filament curvature:

instead, the maximal internal stress occurs for contour lengths

just above the end-to-end distance, when actin filaments are

almost straight (Fig. 3). For large filament lengths L, the

surface reaction to actin filament bending decreases rapidly

(scaling as L�2) and becomes negligible for contour lengths

comparable to the persistence length (Fig. 3). The results in

Fig. 3 bring out the role of boundary conditions in the

transmission of forces from the actin filament to the surface.

When actin filaments are almost straight, the force is directed

along the end-to-end vector with a zero normal component

(term N3 in Eq. 1 and Appendix A). Therefore, the total force

is approximately proportional to the horizontal component of

the vector Ñ

jÑj � Ñ1 ¼ kBTN1;

where N1 is the horizontal force component in normalized

Eq. 1. BC1 conditions, which give an initial force of 0.4 pN

(L ¼ 1 mm; Lp ¼ 15 mm), agree with the classical Euler con-

dition for buckling beams (Eq. B-2, with k ¼ 1)

ÑT ¼ kBT
p

2
Lp

a2 :

For BC2 condition and because of the condition at s ¼ L,

which constrains the filament to be horizontal at one end, the

yielded force is ;0.8 pN for L ; a, as predicted by a linear

FIGURE 1 Buckling of filaments and model.

(A) The initial (left column) and buckled

configurations (right column) for actin fila-

ments are observed by total internal reflection

fluorescence microscopy. Filaments are at-

tached to the microscope slide either by formin

(single circle) or NEM myosin II (double

circle). (B) Schematic representation of the

filament centerline by a curve. A point on

the filament, at position r(s), where s is the

arclength along the filament centerline, is

characterized by the material frame (d1, d3),

with d3 tangent to the filament centerline at

r(s). The fixed orthogonal set of unit vectors

(e1, e3) defines the global orientation of the rod,

with the end-to-end vector along the axis e1.

During filament buckling, the set of three

vectors (r, d1, d3) remains in the plane spanned

by (e1, e3). We also define, u(s), the angle

between d3 and e1. L is the total contour length

of the filament and a its constant end-to-end

distance. (Inset) We model the bond between

the filament ends and the surface by an equiv-

alent spring associated with the filament/formin

junction.
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analysis of Eq. 1 (Eq. B-4, with k ¼ 1). Furthermore, since

the BC3 condition imposes that both tangents are horizontal,

in agreement with the analysis of linearized Eq. 1 in

Appendix B (Eq. B-5), the force is high (;1.6 pN).

In the presence of a large excess of actin monomer, actin

filament elongation is mainly controlled by the kon rate at the

barbed end, which is 11.6 mM�1s�1 for free barbed ends (25);

in the presence of the mouse formin mDia1, the kon is ;43

larger (26). When the barbed end is bound to a leaky capper,

such as a processive formin like mDia1, the free energy

associated to actin monomer insertion at the capped end,

balances the work of the tangent force over a distance of one

actin monomer size (27). Therefore, the actual kon rate is

modified according to

kon

kon;0

� �
¼ exp �Ñ � d3

kBT
d

� �
; (4)

where kon,0 is the on-rate of free barbed end (17,27). In the

above expression, the force Ñ and the tangent vector d3 are

expressed at the barbed end of the actin filament; d is the

radius of one actin monomer. At the onset of buckling, the

ratio (kon/kon,0) is low and eventually reaches unity for large

L, when the force imposed to the actin filament is weak (Fig.

3). In this latter case, the elongation rate is almost as fast as

an actin filament with a free barbed end.

At intermediate contour lengths, the orientation of the actin

filament end changes (BC1 and BC2 conditions, Fig. 2, A or

B). In consequence, the barbed end experiences a transition

from compression, when the force pushes the end against the

formin, to extension, when the actin filament is pulled away

from the surface. In the latter case, actin filament elongation

becomes independent of the mechanical stress and is only

limited by diffusion of actin monomer (Fig. 3, conditions

BC1–2). In contrast, the BC3 condition cannot sustain such an

acceleration of the elongation rate, because both tangents are

fixed and the force remains compressive for all configura-

tions.

The configurations adopted by a single actin filament

during elongation provide a direct way to measure the

buckling force (Appendix C). The solution of Eq. 1 com-

pares well with the force magnitude determined from pooled

experiments that correspond to different actin filament

lengths and end-to-end distances (Fig. 4). Note also that

the model is valid throughout the elongation period and

accounts for both the initial and final phases.

Actin concentration and force at initial buckling

The energy necessary to buckle an actin filament is supplied

by the addition of actin monomers at the formin-associated

barbed end. The presence of an obstacle at the barbed end

slows polymerization and actin filament elongation as

kon;Formin

kon;FreeEnd

¼ exp �A

a
2

� �
;

where we adapt Eq. 4 to BC1 (A ¼ p2Lpd, Eq. B-3), BC2

(A ¼ j2
1Lpd, Eq. B-4) or BC3 conditions (A ¼ 4p2Lpd, Eq.

B-5); d is the fluctuation of the actin filament position

allowing insertion of one actin monomer. If the off-rate is

unaffected by the presence of the constraint, the minimal actin

monomer concentration necessary to sustain buckling is

½Actin�
Buckling

¼ exp
A

a
2

� �
½Actin�

Critical
;

where [Actin]Critical is the critical concentration at the barbed

end of an actin filament in absence of any obstacle (;0.1 mM,

(25)). This relationship predicts the minimal end-to-end

distance as a function of the actin concentration present near

the barbed end. For a concentration of 1 mM actin monomer,

buckling is possible above 0.3 mm (BC1), 0.45 mm (BC2), or

0.7 mm (BC3) (Fig. 5 B); larger concentration (50 mM actin

monomer) does not significantly move this minimum (0.2 mm

for BC1, 0.25 mm for BC2, and 0.4 mm for BC3; Fig. 5 B).

The model predicts that single actin filaments can produce

buckling forces in the range of 5–10 pN (Fig. 5 A, end-to-end

,0.5 mm). Moreover, this figure illustrates the significance of

actin concentration, boundary conditions, and the distance

between actin filament ends in buckling force. BC1 condition

is associated with very loose connections between the actin

TABLE 1 Model parameters and variables

Symbol Meaning Value used in this study Property or definition

kBT Thermal energy 4.05 10�21 J

k Bending modulus 6.1 10�26 J m

Lp Persistence length, Lp ¼ k=kBT 15 mm

e1, e3 Constant unit orthogonal vectors defining the reference plane for bending.

L Filament length 0.2–10 mm

a, a End-to-end distance, end-to-end vector 0.2–1.5 mm a ¼ ae1

s Arclength distance measured along the filament centerline 0 # s # L
r(s) Point position along the filament at arclength s r(L) ¼ r(0)1 ae1

x(s), z(s) Horizontal and vertical coordinates of r(s) rðsÞ ¼ xðsÞe11zðsÞe3

d3(s) Unit vector tangent to the filament centerline at s d3 ¼ dr=ds ¼ cosuðsÞe11sinuðsÞe3

u(s) Angle between d3(s) and the horizontal axis at s
Ñ Buckling force Ñ ¼ Ñ1e11Ñ3e3

N Normalized force N ¼ Ñ=ðkBTÞ
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filament and the cover glass; conversely, BC2, and even more

BC3, represents tight constraint, because one or two ends

have fixed directions. Therefore, for identical end-to-end

distance, buckling with BC3 produces larger force than the

one associated to BC2 or BC1 (Fig. 5 b).

Model for filament-surface junction

Bond robustness between the formin and the coverglass

might limit the actual force developed by the actin filament,

in particular, at short end-to-end distance and contour length

(Fig. 5 A). To better understand the force transmission

between the actin filament and the surface, we modeled the

bond as a spring (Fig. 1, inset, and Appendix D). The

equations remain unchanged (Eq. 1), but the condition for

the rod position at s ¼ 0 now gives the balance between the

internal force developed by the actin filament and the spring

extension (Eq. D-2)

mrð0Þ1 N ¼ 0; (5)

where m is proportional to the spring stiffness. Note that in

condition BC3, both actin filament ends have fixed horizontal

directions; thus, any relative displacement between the fila-

ment end and the surface is impossible. Therefore, we exam-

ine the consequences of Eq. 5 for BC1 or BC2 conditions

only. We focus on the critical stiffness, mc, necessary to hold

the filament end at a distance D from the surface (Fig. 6). Both

BC2 and BC1 requires large bond robustness, in the range

0.2–1.2 pN nm�1, when the end-to-end distance is about equal

to the observation limit in TIRF (Fig. 6); conversely, mc goes

under 0.2 pN nm�1 for long filaments (above 1.5 mm, all

combinations of D and boundary conditions). The bond

stiffness necessary to maintain the actin filament ends close to

the microscope slide becomes very large, as shown in Fig. 6,

for an end-to-end distance below 0.2 mm.

DISCUSSION

We have used a mechanical model for elastic rods, based on the

equilibrium of forces and moments, to analyze single actin

filament buckling events in vitro. Besides its simplicity, the

model depends on a unique parameter, the persistence length for

actin filaments, which ranges from 10 to 15 mm (28–30). With

the help of the model, we can determine the role of external

constraints imposed to actin filament, measure the forces, and

predict the actin level necessary to develop forces against the

mechanical constraints imposed at both filaments ends.

FIGURE 2 Side-by-side comparison of experimental and modeled actin

filaments buckling configurations. Typical buckled configurations, calcu-

lated for boundary conditions of type 1 (BC1, A, left column), boundary

conditions of type 2 (BC2, B, left column), and boundary conditions of type

3 (BC3, C, left column), are compared to their experimental counterpart. (A–

C, right column) Time-lapse evanescent wave fluorescence microscopy of

profilin/rhodamine actin polymerization in the presence of formin (single

circle) and NEM-myosin II (double circle) attached to the coverglass.

Images were taken every 15 s. All model configurations in panels A–C

correspond to an end-to-end distance of 1 mm and contour lengths ranging

from 1.5 to 3.5 mm. Right column in panel a shows experimental buckling

with freely rotating ends (BC1 conditions, end-to-end distance of 3 mm). In

panel B, only the left end rotates (BC2 conditions, end-to-end distance of 5

mm) whereas panel C illustrates buckling with fixed horizontal tangent at

both ends (BC3 conditions, end-to-end distance of 2 mm).
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The solution of Eq. 1 depends only on the ratio of the end-

to-end distance over the contour length, a/L, and on the

conditions specifying the position and the orientation of the

actin filament ends. The filament end positions are fixed in

space (see Eq. 2, in the text). The orientation of the filament

at its ends, which is the decisive factor in the determination

of actin filament configuration, is given by a limited number

of cases listed in Eq. 3. Boundary conditions 1 and 2 give the

possibility to the filament end to change its direction in the

course of elongation, as shown in Fig. 2, A (both ends) or B
(left end). Conversely, in boundary conditions 2 and 3, we

can also fix the value of the angle between the filament

direction and the horizontal axis, as illustrated in Fig. 2, B
(right end) or C (both ends).

Effect of actin filament configuration to
force generation

Solutions of Eq. 1 associated with one of the boundary con-

ditions BC1, 2, or 3 account satisfactorily for all configu-

rations found in vitro. We observed the correlation between

the type of boundary condition (BC1–BC3) and the magni-

tude of the force produced by the actin filament during

buckling (Figs. 2, 3, and 5). If the vector tangent to the actin

filament end can change its orientation, the case of boundary

condition BC1 (Fig. 2 A), the buckling force is always

smaller than the force developed under other conditions (BC2

or BC3). These two latter cases correspond to important

constraints because the vector tangent to the actin filament

centerline at one or both ends has a fixed direction.

The model helps us to trace the variety of actin filament

configurations to the tightness of the connections between

the actin filament and the formin or the myosin. For example,

a single bond between the formin-associated filament end

and the microscope slide allows freedom for the end to

change its direction and corresponds to boundary conditions

of type 1 or 2 in the model. Conversely, multiple attachment

points along the side of the filament via NEM myosin II

amount to maintain the vector tangent to the filament

extremity in a fixed direction. This situation is the analog of

boundary conditions 2 or 3 in the simulations.

To derive force-filament length relations, we used a

persistence length of 15 mm and an end-to-end distance of

FIGURE 3 Force-contour length relation.

(A) The force (boundary conditions BC1, BC2,

and BC3, end-to-end distance of 1 mm) is

maximal at short filament length, when the rod

configuration is almost straight and eventually

becomes weaker for longer filaments. (B) The

normalized elongation rate, corresponding to

curves in panel A (reference is elongation of the

free barbed end), is shown as a function of the

contour length. For BC1 and BC2 conditions,

the tangent force exerted on the filament ends

shifts from pushing against an obstacle (L , 2

mm, B) to pulling away from the attachment

point (L . 2 mm). This transition occurs when

the direction at the filament end is orthogonal

to the horizontal end-to-end vector. Con-

versely, in BC3 conditions, the tangent force

pushes the filament against the surface along

constant directions and, therefore, the normal-

ized elongation rate is always bounded by 1.

We used Lp¼ 15 mm and end-to-end distance

of 1 mm.

FIGURE 4 Experimental buckling and model validation. From 113

pooled filament contours (Fig. 3, A and B, in D. Kovar and T. Pollard

(13) and unpublished data), we determined the force magnitude as solution

of the moment balance equation with BC1 conditions and Lp ¼ 15 mm

(Appendix C). The end-to-end distance is ;5 mm for all data; filament

length is in the range 5–12 mm at the end of the elongation period.
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1 mm. For actin filament contour length just above the end-to-

end distance the force is maximal and crucially depends on the

kind of boundary condition at the actin filament ends: free

rotation gives rise to gentle stress (;0.4 pN). If one of

the tangents is held fixed, the force is doubled (;0.8 pN)

and rises to 1.6 pN when both tangents are constrained. For

shorter end-to-end distance, the force becomes important:

single filaments can produce up to 10 pN for a # 0.5 mm

(Fig. 5 A).

We bring out a direct validation of Eq. 1 by confronting

a modified version of the moment balance equation and

reconstructed geometrical configurations of the actin fila-

ments at different buckling stages (Fig. 4). In addition, Fig. 4

indicates that force fluctuations do not have an important part:

the first harmonic of the buckled configuration is sufficient to

account for the observations (discussion in Appendix A). For

large filament length and end-to-end distance, the buckling

force is only a fraction of pN (Fig. 4), in agreement with the

linear theory for filament buckling (Eq. B-2).

Conditions for actin concentration, bond stiffness,
and buckling formation

It has been suggested that insertion of actin monomers at the

barbed end is limited by the presence of forces or loads (27).

However, this is not a limiting factor, since 1 mM of actin is

sufficient to initiate buckling for a wide range of end-to-end

distances above 0.5 mm (all boundary conditions). For actin

filaments initially shorter than 0.5 mm, the actin monomer

concentration required for efficient polymerization increases

abruptly. Due to the predicted high force (;10 pN, Fig. 5,

BC1–3 conditions) that constrains actin filament ends, it is

necessary to have up to 50 mM of free actin monomers to

elongate and efficiently deform actin filaments of 0.2 mm,

(BC1 conditions). Although we cannot entirely rule out the

possibility that the actin monomer supply is limiting for

elongation of short actin filaments under constraint in vivo,

the proximity of deformable structure (i.e., the cell mem-

brane) near the site of nucleation allow us to predict that in

most cases actin monomers concentration in vivo will be high

enough to limit steric capping.

We modeled the interactions between the filament and the

surface as a spring of stiffness m. In the absence of data for

this parameter, we constrained the model by requiring that

both actin filament ends remains at a distance D from the

surface; D is chosen in the range 3–9 nm, i.e., approximately

FIGURE 5 Actin concentration and force

at onset buckling. The force (A) and the

actin concentration (B) are plotted against

the end-to-end distance, for different at-

tachment conditions (BC1, solid line; BC2,

dashed line; BC3, dotted line). We use Lp¼
15 mm. To appreciate the role of actin in the

buckling of short filaments, note that the

critical actin monomer concentration for

the free barbed end is 0.1 mM.

FIGURE 6 Critical bond stiffness. We determine the conditions necessary

to hold the filament ends at a distance D from the surface for different end-to-

end (a) and contour length (L); a is the control parameter and L is given by

L/a¼ 1.1; Lp¼ 15 mm; D is chosen in the range 3–9 nm, i.e., the typical size

of one actin monomer (;6 nm). The curvilinear domain with blue (red)

boundaries gives the bond stiffness compatible with the constraint 3 nm , D

, 9 nm for conditions BC1 (BC2). For both kind of boundary conditions,

the top (respectively, bottom) border, indicated by red and blue squares, is

associated with D ¼ 3 nm (D ¼ 9 nm, red and blue dots). The vertical

borders, indicated by blue and red triangles, are determined by the condition

Lc , L (Eqs. D-3 and D-4); below this limit, no buckling occurs, whatever

the bond robustness.
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the size of one actin monomer. We can compare the values

for bond stiffness m (Fig. 6) to the stiffness or chemical

bonds in similar systems. Ishijima et al. (31) determined that

the stiffness of the myosin head is in the range 0.14–0.28 pN

nm�1; a value of ;0.69 pN nm�1 was reported for the

stiffness of the acto-myosin cross-bridges during movement

(32). Therefore, the predicted stiffness, in the range 0.2–1.2

pN nm�1 (Fig. 6), is compatible with the experimental values

obtained in similar systems (acto-myosin cables). In conse-

quence, actin monomer concentration and the bond stiffness

necessary to observe buckling would not constitute a lim-

itation for model predictions applied to in vivo situations.

Implication of the model for force generation
in vivo

Formin-driven (re)arrangement of the actin cytoskeleton is

essential to initiate new cell compartments (filopodia, yeast

buds), to establish cell polarity before division, to assemble

the cytokinetic contractile ring and to regulate cell-cell or

cell-surface interactions during adhesion and motility (12).

All these cellular processes require the right combination (in

space and time) of chemical and physical factors operating

within a cell of cellular compartment, including: filament

size, actin monomers concentration, boundary conditions,

and bond stiffness. Although our modeling approach is moti-

vated by experiments in reconstituted systems, we can extend

our results to in vivo conditions.

We have shown that over a wide range of conditions, a

single filament can develop forces to move the membrane

and/or organize the cell cytoskeleton. The buckling force per

single filament can counterpoise resistance up to ;10 pN

(Fig. 5 A), which is on the order of magnitude of the force

measured in thin highly curved structures such as experi-

mentally driven tethers (33). In addition, our study shows

that this deformation requires a high but plausible concen-

tration of free actin monomers (;10–50 mM, Fig. 5 A) and a

bond stiffness in the range 0.1–0.5 pN nm�1 (Fig. 6).

Therefore, these two factors are not limiting in the generation

of large forces at the cell scale level.

From Fig. 5, we can extrapolate the role of short actin filaments

in vivo. A single actin filament is able to develop a force ;10 pN

only in a prebuckling state whereas its length remains relatively

short (,0.5 mm). As illustrated in Figs. 5 and 6, prebuckling

occurs when both actin filament ends are trapped by adjacent

molecular complexes in the cell. Therefore, it is important to

examine the different physical or molecular mechanisms keeping

the filament configuration (its orientation and its length) in a

prebuckled state. We will examine the consequences of two

possibilities for controlling filament configuration by: a), severing

filaments; or b), cross-linking filaments together.

Severing of filaments by ADF/cofilin could provide ways

to expand the population in the prebuckling stage at the

expense of long and old filaments. Experiments demonstrate

that ADF/cofilin utilizes the mechanical properties of fila-

ments to bind them before severing (34). Therefore, because

the mechanical stress experienced by filaments during

elongation is rapidly decreasing after the onset of buckling

(Fig. 3), ADF/cofilin could use this differential property to

bind preferentially to postbuckled filaments, whose mechan-

ical stress is the lowest. After severing, only actin filaments in

the prebuckling stage and of short contour length would

survive while their turnover is maintained at a high rate.

Cross-linking proteins (e.g., fascin or a-actinin) and the

Arp2/3 complex are extremely important for actin filament

formation or actin cytoskeleton growth. In the presence of

high cross-linking or branching activity, the size of the fila-

ment piece between the free barbed end and the first cross-

link would be well below 1 mm while it lengthens rapidly by

polymerization. Therefore, these short filaments are perma-

nently kept in a prebuckling state and could provide a large

part of the total force developed by actin filaments for cell

deformation or lamellipodia progression.

Finally, we also hypothesize that the mechanical stress

developed by growing actin filaments could represent a new

way to convey information in the cell and achieve organi-

zation of the cytoskeleton. It is well accepted that informa-

tion driving actin filament nucleation and elongation flows

from external signaling molecules to their intracellular

targets, via actin regulators at the membrane, including

WASP, formins or the complex Arp2/3. However, the type

of boundary conditions experienced by actin filament

depends on the interactions between the filament end and

the activator complex at the membrane. Therefore, if the

force developed during filament elongation becomes large, it

could, in turn, modify the molecular organization of the sites

where actin filament nucleation and elongation occur. Our

study illustrate the possibility that, in addition to on and off

chemical switches, mechanical stress could take part in the

self-organization of the cell cytoskeleton during movement

by direct activation and/or inhibition of actin polymerization.

APPENDIX A: MECHANICAL EQUILIBRIUM
EQUATIONS FOR A CONSTRAINED ROD

We use the Kirchhoff equations for elastic rods to model actin filaments,

which are assumed inextensible and isotropic (24). The rod position (Fig.

1 A) is defined by a vector function

s1rðsÞ; 0 # s # L;

where s is the arclength of the rod centerline and L the total filament length.

The local orientation of the filament is given by a set of two orthonormal

vectors, (d1(s), d3(s)); d1(s) is aligned with the principal flexure axis of the

rod and prescribes the orientation of the cross section at s. The tangent vector

to the rod centerline, denoted d3(s), lines up with the torsion axis. d3 is

obtained by derivation of the rod position r(s) with respect to arclength s

d3 ¼
dr
ds
:

Actin filaments are observed in the field of an evanescent wave (,500 nm)

so that the rod remains in a plane during elongation. Moreover, as suggested
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by experimental evidences showing no accumulation of filament torsion

along its centerline (Fig. 3 g in Kovar and Pollard (13)), the actin filament

does not suffer out-of-plane deformation (Zajac phenomenon, (35)).

Therefore, we demand that (r, d1, d3) be in a plane spanned by a set of

two, constant, orthonormal vectors (e1, e3). Additionally, we assume that the

end-to-end vector is along the horizontal axis

rðLÞ ¼ rð0Þ1 ae1;

where a is the end-to-end distance and ae1 the end-to-end vector (Table 1).

Let u(s) be the angle between d3 and e1. The vectors associated with filament

position and orientation are

rðsÞ ¼ xðsÞe1 1 zðsÞe3;

d3ðsÞ ¼ cosuðsÞe1 1 sinuðsÞe3;

d1ðsÞ ¼ sinuðsÞe1 � cosuðsÞe3:

To find model equations and boundary conditions, we start from the

Lagrangian of the system, including contributions arising from the elastic

energy stored in filament flexure, the inextensibility constraint and

attachment conditions. The total elastic energy is

E1 ¼
k

2

Z L

0

du

ds

� �2

ds;

where k is the bending modulus of the rod, related to the persistence length,

Lp, through k ¼ LpkBT; kB and T are the Boltzmann constant and absolute

temperature (Table 1). The internal force in the rod, Ñ, ensures inextensibility

so that s is the arclength for all configurations. Therefore, any departure from

equation dr=ds ¼ d3 contributes to change the potential energy by

E2 ¼ �
Z L

0

Ñ � dr
ds
� d3

� �
ds:

The physical interpretation of the term
R L

0
Ñ � d3ds in E2 is a potential energy

associated with a load applied to filament ends. Finally, the surface reaction

ũ0 (respectively ũL) at s ¼ 0 (respectively L) is included via terms for the

energetic contribution of Ñ at s ¼ 0 or L

E3 ¼ ũ0 � rð0Þ1 ũL � ðrðLÞ � ae1Þ

Therefore,

L̃G ¼ �E1 � E2 1 E3;

is the Lagrangian function, which, after normalization by kBT, reads

LG ¼
L̃G

kBT

� �
¼� Lp

2

Z L

0

du

ds

� �2

ds 1

Z L

0

N � dr
ds
� d3

� �
ds

1 u0 � rð0Þ1 uL � ðrðLÞ � ae1Þ;
(A-1)

with N ¼ ÑðkBTÞ�1; u0;L ¼ ũ0;LðkBTÞ�1: The variation of LG results into

Euler-Lagrange equations

Lp

d2
u

ds
2 ¼ �N1sinu 1 N3cosu;

dN
ds
¼ 0;

dx

ds
¼ cosu;

dz

ds
¼ sinu; (A-2)

and boundary terms

u0 � N ¼ 0;

uL 1 N ¼ 0:

The first equation in Eq. A-2 represents the balance between the bending

moment and the constraints exerted by the fixed-rod end conditions. From

the second equation, we note that the buckling force, N, is constant along the

filament centerline. Finally, the second and third equations give the filament

position. The unknown force components, N1 and N3, which are determined

as part of the solution of (Eq. A-2), depend on the boundary conditions used

for u, x, and z. They give the surface reaction exerted on the rod during

buckling (u0 and uL) and, consequently, the force exerted by the elongating

filament on its ends. The boundary conditions for filament ends come as

xð0Þ ¼ 0; zð0Þ ¼ 0;
xðLÞ ¼ a; zðLÞ ¼ 0:

We supplement these constraints by one condition for the angle u chosen in

the list

BC1 :
du

ds

� �
s¼0

¼ 0;
du

ds

� �
s¼L

¼ 0;

BC2 :
du

ds

� �
s¼0

¼ 0; uðLÞ ¼ 0;

BC3 : uð0Þ ¼ 0; uðLÞ ¼ 0:

The boundary conditions of type 1, 2, or 3 (BC1–3) refer to different

behavior of the filament orientation at s ¼ 0 or L. Nonlinear Eq. A-2 admit

multiple solutions depending on resonance arising from the constraints on

rod ends and boundary conditions BC1–3. Also, note that these nonlinear

equations are valid for arbitrary large deviations of the tangent vector from

the horizontal baseline, to the contrary of the fourth-order linear differential

system classically used in models for semirigid polymers.

In the limit of slightly bent rods, x(s) approximates s and u(s) equals the slope

of z(s) (as function of x(s)). From Eq. A-2, one recovers the classical fourth-order

differential linear equation valid for small amplitude bending solution

Lp

d
4
z

dx
4 1 N1

d
2
z

dx
2 ¼ 0:

Time relaxation constant for almost
straight filaments

The hydrodynamics of actin filaments is controlled by fluid viscosity due to its

low Reynolds number and can be modeled via drag forces distributed along the

filament. However, we used a model without friction terms (see Eq. A-2),

because relaxation to equilibrium is fast. Tocheck the validity of this assumption,

we look at the stability of the solutions of Eq. A-2 in the limit of almost straight

configurations. The angle u, which is function of space and time, obeys

Lp

@
4
u

@s4 1 N1

@
2
u

@s2 ¼ �
c

kBT

� �
@u

@t
: (A-3)

In the above equation, c is the orthogonal drag coefficient for a filament

moving at a constant altitude, h, near a planar surface (36)

c ¼ 4ph

ln 2h
r

� �;
where h is the fluid viscosity and r the filament radius. Solution of Eq. A-3,

supplemented with four boundary conditions ð@u=@sÞs¼0;L ¼ 0;
R L

0
uds �

zðLÞ ¼ 0; uð0Þ ¼ uðLÞ, yields the relaxation time

tk ¼
c

LpkBT

L

2kp

� �4

;
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where k is a positive integer. Using h ¼ 0.07 Pa s, h ¼ 500 nm

(approximately the depth of the evanescent wave), r ¼ 4 nm, and L in the

interval 0.2–1 mm, we found that t1 ranges from 0.003 to 1.7 ms. (Lp ¼ 15

mm). Therefore, this result proves that relaxation to equilibrium is very fast

and the equilibrium Eq. A-2 account for the buckling of actin filaments. Note

that the actin filament length L has the role of a pseudotime coding for the

actin filament age.

Model validity

In this study, we assume that filament shape fluctuations are negligible and

a deterministic description of actin filament bending accounts for in vitro

experiments and in vivo observations. We discuss the validity of this

assumption with respect to fluctuation of thermal origin.

On the one hand, the existence of multiple bending modes, solution of Eq.

A-2, raises the possibility of rapid, noise-induced, transitions between them.

We use the partition function, Z, which gives the number of configurations for

semirigid polymers constrained by a constant end-to-end distance (37) to

estimate the statistical distribution of filaments during elongation. Z depends

only on three parameters, the filament contour length (L), the end-to-end

distance (a), and the persistence length (Lp). If we keep a and Lp constant and

vary L, .99% of the distribution is concentrated in the interval a#L#a110d,

where d is the typical diameter of one actin monomer (;6 nm); this conclusion

is valid for all values of Lp ranging from 10 to 15 mm. Thus, for a/L ratio below

0.95 (or, equivalently, L . a 1 10d), the number of rod configurations

compatible with the constraints is extremely low. In consequence, the most

probable filament shape corresponds to the one with the lowest energy level. On

the other hand, the physics of semiflexible polymers predicts a rigid-to-flexible

transition at high L/Lp ratio (;2.85–3) (38). This implies a second limit, for

large L, above which the configuration of very long actin filament (;30–45

mm) cannot be accounted for by our approach. If we combine these two bounds,

we see that model validity is limited to the interval ða=0:95Þ#L#2Lp.

In actin polymerization experiments followed by evanescent wave micros-

copy (13), buckling is observed for end-to-end distances as short as 0.7 mm up to

a final length of ;10 mm, hence, L/Lp ranges from 0.05 at beginning to ;0.6,

when elongation stops (Lp ¼ 15 mm). Moreover, when incorporation of

monomers into actin filaments is fast (26), the ratio a/L decreases rapidly below

0.95. Therefore, the experimental bounds for L are compatible with the use of a

simple, deterministic model based on the mechanics of elastic rods.

APPENDIX B: DETERMINATION OF THE FORCE
MAGNITUDE AT INITIAL BUCKLING

We derive an expression for u and the internal force components, solution of

Eq. A-2, in the case of a slightly bent rod, when the contour length is just

above the end-to-end distance. Thus, we limit our search to solutions of Eq.

A-2 with small amplitude: the variables (u(s), N(s)) will be function of the

‘‘small’’ parameter d ¼ 1� a=L, when L ; a.

BC1 conditions

A direct integration of Eq. A-2, using boundary conditions for the rod ends

(Eq. 2) and BC1, gives

Lp

du

ds

� �
s¼L

� du

ds

� �
s¼0

� �
¼ �N1

Z L

0

sinuds 1 N3

Z L

0

cosuds

0

0 ¼ �N1ðzðLÞ � zð0ÞÞ
1 N3ðxðLÞ � xð0ÞÞ

0

0 ¼ aN3:

Because the end-to-end distance is nonzero, N3 vanishes identically: the

vertical force is zero. The linearized equation for u(s)

Lp

d2
u

ds
2 ¼ �N1u (B-1)

has solutions of the form

ukðsÞ ¼ Akcos
kps

L

� �
; N1 ¼

kp

L

� �2

Lp; N3 ¼ 0; (B-2)

where k is an integer; at this stage, the amplitudes Ak are arbitrary. The total

extension x(L) is obtained by direct integration of equation

dx

ds
¼ cosuðsÞ � 1� 1

2
Akcos

kps

L

� �� �2

;

which implies

xðLÞ ¼ L� L

4
A2

k: (B-3)

Using the boundary condition x(L) ¼ a, we obtain a relation between the

unknown amplitudes Ak and d

A
2

k ¼ 4 1� a

L

� �
¼ 4d;

Because the condition z(L) ¼ 0 is O(d3), it is automatically fulfilled at O(d).

The amplitude of the first buckling mode increases with L as

A1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

L

� �r
¼ 2d

1=2
:

BC2 conditions

Because boundary conditions BC2 are asymmetric, both components of the

internal force are nonzero. The small amplitude solution for u(s) reads

uðsÞ ¼ N3

N1cosðjÞ

� �
cosðjÞ � cos j

s

L

� �� �
;

where j is solution of

tanðjÞ ¼ j; j . 0:

The solutions of the above equation begins with f4:493 � � � ; 10:904 � � � ;
17:220 � � �g and are asymptotically given by jk ¼ ð2ð2k � 1Þ11Þp=2 for

large integer k. From conditions x(L) ¼ a, z(L) ¼ 0, and assuming that N3 is

of order O(d1/2), one can check that

N1 ¼
jk

L

� �2

Lp;

N3 ¼ 2
jkLp

L
2 d

1=2
;

uðsÞ ¼ 2

jkcosðjkÞ
cosðjkÞ � cos jk

s

L

� �� �
d

1=2
; (B-4)

is solution of Eq. A-2 with BC2 conditions and tanðjkÞ ¼ jk.

BC3 conditions

The last case, BC3, can be treated in a similar way. Because boundary

conditions are symmetric (u is zero at both ends), the component N3 vanishes

and we are left with
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N1 ¼
2kp

L

� �2

Lp;

N3 ¼ 0;

uðsÞ ¼ 2sin 2kp
s

L

� �
d

1=2
: (B-5)

Note that the condition z(L) ¼ 0 selects even harmonic solutions. If we

impose nonhorizontal tangents (i.e., uð0Þ 6¼ 0; uðLÞ 6¼ 0), N3 is generally

nonzero, unless uð0Þ1uðLÞ ¼ 0.

APPENDIX C: ESTIMATION OF THE FORCE
MAGNITUDE FROM FILAMENT CONFIGURATION

Integrating Eq. A-2 twice with respect to s and using conditions BC1, we

show that the moment balance is a relation between u and the rod position

LpðuðsÞ � uð0ÞÞ1 N1

Z s

0

xðuÞdu

� �
� N3

Z s

0

zðuÞdu

� �
¼ 0:

(C-1)

with constant coefficients Lp, N1, and N3. If we express the relation (Eq.

C-1) at n points of abscissas si, (i ¼ 1, . . . n) along a particular filament, we

obtain a linear system of (n� 1) equations and two unknown coefficients N1

and N3

Mx ¼ 0; (C-2)

with

M ¼

Lpðu2 � u1Þ X2 �Z2

..

. ..
. ..

.

Lpðui � u1Þ Xi �Zi

..

. ..
. ..

.

LpðuN � u1Þ XN �ZN

0
BBBBBB@

1
CCCCCCA
; x ¼

1

N1

N3

0
@

1
A;

where ui ¼ uðsiÞ, Xi ¼
R si

s1
xðuÞdu, and Zi ¼

R si

s1
zðuÞdu. Because the system

of linear Eq. C-2 is overdetermined (two unknowns and n� 1 equations), we

solve it in the least square sense by minimizing the norm jMxj. Therefore,

the solution, x*, is proportional to the eigenvector associated with the

minimal eigenvalue of the symmetric (3 3 3) matrix TMM

The coefficients of TMM are determined from the B-spline representation

of the functions u(s), x(s), and z(s) extracted from a particular filament

configuration. After normalization of the solution so that its first component

is 1, the force components N1 and N3 read off from the second and third

component of x*. The form of Eq. C-1 depends on the boundary conditions

for u at s¼0, L. Other choices (e.g., conditions BC2 or 3) would give slightly

different terms but the linearity of the final equation with respect to the

unknown force components is preserved, hence, the procedure to find the

actual force from filament configuration remains unchanged.

APPENDIX D: TRANSITION BETWEEN STRAIGHT
AND BUCKLED CONFIGURATIONS

We examine the possibility that one of the rod ends is weakly attached to the

formin by a spring, a situation directly relevant to the analysis of the bonds

between formin-driven filaments and the cell membrane in vivo conditions.

To derive the corresponding equations and boundary conditions, we use a

slightly modified Lagrangian function (Eq. A-1)

LS ¼�
Lp

2

Z L

0

du

ds

� �2

ds 1

Z L

0

N � dr
ds
� d3

� �
ds

� m

2
rð0Þ2 1 uL � ðrðLÞ � ae1Þ; (D-1)

where the reaction constraint at s ¼ 0 is replaced by the harmonic potential

of a spring of stiffness m (the actual stiffness is kBTm). The variation of Eq.

D-1 gives equations similar to Eq. A-2 but with different boundary terms

� mrð0Þ � N ¼ 0 0
mxð0Þ1 N1 ¼ 0

mzð0Þ1 N3 ¼ 0
:

	
uL 1 N ¼ 0: (D-2)

The boundary condition at s¼ 0 represents the balance between the force due

to spring extension �mrð0Þ and N. We look for small amplitude solutions

(BC1 conditions), given by Eq. B-1, and constrained by the condition

A2

k ¼ 4 1� a

L

� �
� 4

kp

L

� �2
Lp

Lm
:

Real solutions of the above equation exist for L above a critical length Lc,

solution of

mðLc � aÞ � kp

Lc

� �2

Lp ¼ 0; (D-3)

In the interval a#L#Lc, the most favorable configuration for filaments

corresponds to straight rods; transition to buckling occurs for L¼Lc, when the

spring force balances the force of elastic origin, as given by Eq. D-3. Similar

analysis for BC2 condition gives the expression for the amplitude and Lc

A
2

k ¼ 4 1� a

L

� �
� 4

jk

L

� �2
Lp

Lm
;

0 ¼ mðLc � aÞ � jk

Lc

� �2

Lp; (D-4)

with jk is one of the positive solutions of tanðxÞ ¼ x (Eq. B-4).

TMM ¼

L
2

p +
n

i¼2

ðui � u0Þ2
� �

Lp +
n

i¼2

ðui � u0ÞXi

� �
�Lp +

n

i¼2

ðui � u0ÞZi

� �

+
n

i¼2

X
2

i

� �
� +

n

i¼2

XiZi

� �

+
n

i¼2

Z
2

i

� �

0
BBBBBBB@

1
CCCCCCCA
:
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Fluctuations of filament length at onset
of buckling

Filament undulations, driven by thermal fluctuations, shorten the projected

filament length along the end-to-end axis: therefore, the critical length given

by conditions (Eqs. D-3 and D-4) can change dramatically. Before buckling,

the spring constraint imposed to the filament is loose: the different bending

modes are almost independent. Therefore, we use the elastic energy

associated to the bending mode k (unit is kBT)

Ek ¼
Lp

2

Z L

0

duk

ds

� �2

ds ¼ Lpp
2

4L
k

2
A

2

k;

to find the second and fourth moments of the fluctuating quantities Ak by

application of the energy equirepartition theorem

ÆA2

kæ ¼ 2L

p
2
Lp

1

k
2; ÆAk1

Ak2
æ ¼ 0; k1 6¼ k2;

ÆA4

kæ ¼ 3ÆA2

kæ
2
; ÆA2

k1
A

2

k2
æ ¼ 0; k1 6¼ k2:

From Eq. B-3, which gives the projection of the filament along the horizontal

axis, we obtain the average of x(0) and x2(0)

Æxð0Þæ ¼ L 1� 1

2

L

ðpkÞ2Lp

 !

Æxð0Þ2æ ¼ L
2

1� L

ðpkÞ2Lp

1
3

4

L

ðpkÞ2Lp

 !2 !
: (D-5)

The onset of buckling occurs for a new critical filament length, denoted LF
c ,

solution of an equation analogous to relation (Eq. D-3) with k ¼ 1

m Æx L
F

c

� �
æ� a

� �
¼ Lpp

2

Æx L
F

c

� �2
æ
:

We can prove that

LF

c ¼ Lc 11
1

2p
2

� �
Lc

Lp

� �
1

1

4p
4

� �
Lc

Lp

� �2

1O Lc=Lp

� �3
� � !

;

where Lc is solution of Eq. D-3. We find for LF
c

L
F

c � Lc 1 1 0:051
Lc

Lp

1 0:026
Lc

Lp

� �2
 !

:

Thus, for L , 2Lp, we can use the deterministic Eq. D-3 to predict onset of

buckling.
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